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Abstract – Grid Architecture coordinates the sharing of 

resources and allows for collaboration of often 

heterogeneous equipment that is geographically 

distributed. While research grids provide needed services, 

volunteer-based grids promise greater processing power 

provided that the overhead, availability, and heterogeneity 

of the resources are manageable. JAVA-based applets 

provide quick installation across heterogeneous platforms 

and are well placed to speed the transition to grid 

computing. 
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1 Introduction 

  Companies and institutions wishing to expand their 

processing power have typically faced among three typical 

options. That is, they can buy more equipment, subscribe to 

a service provider, or make better use of the equipment they 

have. Grid computing falls between the last two options. 

Research grids can provide institutions with the ability to 

combine their processing power with other institutions’ 

resources into a collaborative, shared resource which 

outstrips the capabilities of any one institution. At the other 

end of the spectrum, volunteer grids form from users 

installing software to share their underutilized computer 

resources with a central authority which disseminates work 

units.  

 This paper provides an overview of grid computing as 

well as a case study at the University of Hawaii at Hilo 

computer science department. As part of the computer 

architecture class, the case study centered on using 

GreenTea Technologies’ java-based grid computing 

software to build a distributed peer-to-peer grid. This tool is 

used to perform benchmarks and analysis on various 

organizations of computers scaling from single computers, 

to a collaboration of two small clusters.  

 Volunteer grids provide the opportunity for users to 

volunteer their personal computing power toward causes 

they deem worthy. Current such grid projects include 

Folding@home and Seti@home. Additionally, Seti@home 

averages 13Tflops of processing power making it more 

powerful than even the top three supercomputers combined. 

As such, Gordon Bell projects that grid computing and 

peer-to-peer computing coupled with Internet 2 will remain 

the most powerful supercomputer [7]. 

2 Grid Computing 

 Grid computing differs from many peer-to-peer 

distributed computing programs in that there is a central 

authority computer which manages the distribution and 

collection of work units. To process a job on a grid 

computing system, one would connect to the central 

authority and request one’s job be processed.  

 When the central authority receives the job, the job 

must be subdivided into work units for processing on the 

work nodes, which are the work computers that are 

members of the grid. If the job is an application, then it 

must be designed for parallel computation. Alternatively the 

job could be a sequence of input to run against an existing 

grid-based application, such as a gene search against a 

genome database. Figure 1 demonstrates an example 

architecture for a grid. 

 

Figure 1 - Grid Architecture Example 

2.1 Categories of Grids 

 Although grid computing serves a diverse market 

ranging from commerce to research, grid computing is 

typically divided into three broad categories: computational 

grids, data grids, and equipment grids. 



2.1.1 Computational Grids 

 Computational grids focus on providing the raw 

computational power needed to solve computation intensive 

problems. Bioinformatics benefits from grid computing as 

gene sequencing and protein folding require immense 

computational power. Through computational grids more 

processing power can be harnessed than any single 

supercomputer.  

2.1.2 Data Grids 

 Immense repositories of data, such as gene data banks, 

are overly burdensome to maintain multiple coherent 

copies. To provide higher levels of RAID redundancy and 

integrity may exceed or encumber the financial resources of 

an institution. Thus it is opportunistic for companies to 

cooperate and share repositories of data for research. While 

some overhead exists from not having local copies of the 

data, appropriate management of resources can ensure that 

this overhead is kept to a minimum. Data grids provide for 

control and access of large repositories of data which may 

be geographically distributed.  

2.1.3 Equipment Grids 

 Institutions with a primary piece of equipment and 

various associated support equipment may benefit from 

forming an equipment grid. For example, a telescope will 

have control, processing, and analysis equipment to support 

it. As such, an equipment grid can allow remote control and 

access to the unique resources of an institution.  

2.2 Applications for Grid Technology 

 Applications that run on grid technology tend to fall 

into two classifications: highly parallel problems, and 

dependent parallel problems. 

2.2.1 Highly Parallel Problems 

 Highly parallel problems can be decomposed into 

independent work units. Such problems are often dubbed 

“embarrassingly parallel” problems as they do not rely upon 

data within any other work unit which may be on a different 

computer. As such there is little or no communication 

between multiple nodes. Embarrassingly parallel problems 

include ray tracing, single frame rendering, and brute force 

cryptography.  

2.2.2 Dependent Parallel Problems 

 In contrast to highly parallel problems, dependent 

parallel problems require much greater communication 

between the work nodes to derive solutions. Such problems 

rely on values derived in multiple work units. Some 

examples include heat diffusion, ecosystem modeling, and 

climate modeling.   

2.3 Grid Computing Software Components 

 The software that drives grid computing must be 

adaptable to run the desired computers that will serve as 

work nodes in the grid architecture. Making the client 

software that runs on the nodes independent of the system 

architecture or operating system permits a highly 

heterogeneous community of computers to contribute.  

2.3.1 Resource Management 

 Resource management involves dividing and 

disseminating the work units. The resource manager also 

may play a role in supporting collaboration between nodes 

for dependent parallel problems. Work division must 

balance communication overhead with computation time. 

That is, the greater number of work units, the greater the 

overhead from communication in transmitting and receiving 

the data to the nodes. On the work nodes variables that may 

affect the allocation of work units includes processor speed, 

disk space available, and quality of network connection.  

2.3.2 Resource Discovery 

 Part of the management of grids includes software to 

discover new resources. Such software may include the 

capability of identifying computers running the client 

software within a network. Additionally, grid nodes may 

notify the central authority computer of their presence and 

readiness for processing jobs.  

2.3.3 Resource Monitoring 

 Grid management software may be integrated with a 

grid monitoring application. Monitoring is important to 

ensure efficient and even distribution of work to resources. 

The software may provide a graphical interface or merely 

text log files.  

2.3.4 Integrity and Security 

 Ensuring integrity and security is vital yet more 

challenging on a grid architecture given the typically 

distributed nature of the medium. Computers cooperating to 

build a solution may be separated by thousands of miles. 

Thus, the grid management software must ensure that the 

work units maintain their integrity from both accidental and 

malicious modifications.  

 Furthermore, given the great processing power 

capable in a grid, security is paramount to ensure that the 

grid software does not permit unauthorized users to access 

the machines. In addition to wasting resources, such access 

could be used to launch distributed denial of service 



attacks. Grid applications, like any other software, can be 

vulnerable to stack, buffer, and memory overflows which 

could permit malicious users to gain unauthorized access to 

node computers. Although the grid application may be 

secured, the tools used to build it such as the Globus toolkit 

may potentially hide additional security threats. 

Additionally missed upgrades, invalid certificates, and 

rebuilds of software may threaten security. 

 Even the Teragrid, an amalgamation of 

supercomputers forming a research grid in the United 

States, has proven susceptible to hacker intrusions. [1] 

Although providing openness and ease of joining or using a 

grid may seem like idyllic gestures, they can lead to 

compromised security and integrity of systems.  

2.3.5 Transmission 

 Grid computing must provide a mechanism for 

transmitting and receiving work units between the central 

authority computer and the work nodes. Generally grid 

computing uses the existing TCP/IP protocols as a 

backbone for transmission. Additional application layer 

protocols may be needed to ensure that work units are not 

lost from, for example, a work node going offline. 

2.4 Challenges to Implementing Grids 

 First of all there exists a public stigma attached to 

grids that they are primarily for grand scale projects 

requiring massive amounts of computation. However, grid 

architecture can scale up or down to meet the needs of a 

diverse population of clients.  

 Secondly, most commercial software is not designed 

to run on grid architecture. Similar to the transition from 

single processor to multiple processor machines, the 

software must be adjusted at the code level to accommodate 

spreading the distribution of work across multiple machines 

on a grid. 

 However, consider a common operation in a business, 

that of querying a large database. This operation may be 

performed during payroll, sales, and support. On a single 

server system the server may need to scan a large portion of 

the database to return results for a query. A grid computing 

solution to this problem might divide the database into 

hundreds of work units and send it off to the work nodes in 

the field. The work nodes would run the query against its 

small subset of the database and return its result. A simple 

merge sort could then combine the results into the final 

result set returned to the user. Thus, the server would 

experience a reduced load as the work is distributed to the 

grid and the grid would function like a giant multi-

processor machine. Therefore, the conversion of certain 

business operations to run on a grid could well justify the 

expense.  

 One other challenge facing grid computing is the lack 

of standards as the technology is still somewhat immature.  

Companies vying to create standards for grid computing 

include GCF, W3C, and OASIS. 

 

3 Case Study: A Java-based Grid 

 Although development of complex software 

applications for grid architecture may be beyond many 

companies’ capabilities, there exists a simpler method for 

incorporating benefits of grid computing. Java-based 

volunteer grids incorporate a platform independent 

application which manages the grid of computers. One such 

program is GreanTea provided by GreenTea Technologies.  

3.1 GreenTea Description 

 GreenTea is a Java-based application that facilitates 

parallel computation, which can include peer-to-peer 

computing, grid computing, distributed computing, and 

network computing. Since it is programmed in Java, the 

application can run on most any platform including UNIX, 

Linux, Windows, Mac OSX, and even Java-enabled cell 

phones. [4]  

 Additionally, GreenTea is far simpler to install and 

configure than MPI or other low-level tools such as the 

IBM Globus Toolkit. However, GreenTea does cause 15-

20% overhead. [4]  

3.2 Project Overview 

 This project centers on researching the relationship 

between speedup of a process and the number of computers 

on a grid. Amdahl’s law [7] has been applied to grid 

applications as a means of estimating the maximum speed 

up from applying a given code to parallel execution. 

Maximum speed up is given by the equation: 
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F represents the fraction of the code that is serial and 

cannot benefit from parallelization. N represents the 

number of processors, in terms of grid computing, work 

nodes that will work on the code. However, this law ignores 

the overhead from communication between nodes. 

 Therefore, the speedup is limited by the amount of 

overhead from communication between the nodes. From 

analyzing benchmark runs on various configurations it may 

be possible to derive the maximum number of nodes a 

given piece of code could derive benefit under parallel 

execution. If the percentage of serial vs. parallel code can 

be approximated, this may aid in the development of an 

optimization routine. Since both too little and too much 



division of the work can lead to sub-optimal time for 

completion, an optimization routine is desirable. 

3.3 Test 1: Ray Tracing Proof of Concept  

 In this experiment I performed the ray tracing demo 

included with the GreenTea demo package. For all tests 

herein the number of lines and sphere/line is fixed at 10. 

The three trials, demonstrated in figure 2,  show variations 

in the time not only from varying the number of nodes, but 

also from varying the number of subtasks. As shown, 

increasing the number of subtasks tends to decrease the 

time to complete the ray tracing operation. However, 

increasing the number of nodes tends to provide the 

greatest benefit. 
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Figure 2 - Green Tea Trials 

3.4 Test 2: Prime Numbers   

 In this experiment I developed a prime number 

validation routine that operates in a distributed manner 

across a GreenTea network. First, the program divides the 

test value in half since no factors can be larger than half the 

test value. Actually, the square root of the test value might 

have been more appropriate here. Anyway, next the lower 

half is divided by the number of word nodes in the 

GreenTea network. This value is provided by one of the 

GreenTea classes.   

 Next, the work classes are stored and subsequently 

sent through the network to the work nodes. There the work 

nodes check ever value if the work unit includes values less 

than ten, or every odd value if the work unit is only 

numbers greater than ten. While this causes many numbers 

to be checked whose factors have already been checked, 

this method is very simple and it would be inappropriate to 

maintain a list of the prime numbers.  

 Lastly, a Boolean value representing whether the work 

unit’s interval is relatively prime to the test value is 

returned to the main program via the network. The main 

program compares all returned results, returns the results to 

the user, and displays the total elapsed time for the process.  

3.5 Test 3: Monte Carlo Integration  

In this program I have coded a Monte Carlo 

integration estimation to the integral of one fourth of a 

circle with radius 1. This is accomplished using the Monte 

Carlo integration by inscribing that quadrant within the unit 

square. Note that this is equivalent to formula 2. For this I 

have implemented an existing random number generator. 

Supposing that the random number generator is sufficiently 

random, the Monte Carlo technique will provide an accurate 

estimation to the integral value at high numbers of intervals. 

  

 ∫ −
1
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For the random number generation I chose the fourth 

example from Park and Miller [9]. This example stipulates 

that MAXINT must be smaller than 2
31
-1. Although quasi-

random numbers might be more appropriate for a Monte 

Carlo simulation, this implementation uses pseudo-random 

numbers. The convergence of this solution, where N is the 

number of trials, is: 

 

 
n

1
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Overall the development of the random number 

generating code is relatively straightforward and self-

explanatory. One point of note is that each of the work 

nodes needed to receive its own unique seed for the random 

number generation. Without that, the pseudo-random nature 

of the random number generator would produce identical 

results across most of the work nodes. Thus, the main 

program  used its own copy of the random number 

generator to produce pseudo-random seeds which were then 

passed to and used in the work nodes. 

Although the Monte Carlo method for integration 

approximation does converge upon the correct answer, it 

does so at an incredibly slow rate. If high rate of accuracy is 

needed, this method may be prohibitively expensive in CPU 

time. However, for what Monte Carlo lacks in speed to a 

solution, it makes up for in simplicity. Of course, the 

accuracy of the Monte Carlo method is dependent on the 

random number generator providing truly random numbers. 

Additionally, owing to the nature of the random numbers, 

the value of the estimation to the integral will not converge 

in a strictly decreasing manner. This method may be useful 

for functions that are difficult or cumbersome to integrate 

analytically, as was the example above. Additionally, higher 

dimension integrals can be performed in a similar manner 



by enclosing the desired portion within a known 

area/volume/etc.  

 

Distributed Monte Carlo
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Figure 3 - Monte Carlo Trials (Lower Order Trials) 

 Figure 3 demonstrates that there is not always a cost 

savings in a distributed solution. As the number of nodes 

increased, the time to complete the same task actually 

increased! Additionally, the data shows that some 

subsequent, in other words larger, tests perform better than 

test cases where there is fewer trials. One reason is that 

overhead from division and distribution of work units plays 

a major factor in determining the run time of a program. 

Figure 4 demonstrates that in higher order trials there is 

indeed an appreciable decrease in completion time for using 

more nodes. The break even point for this algorithm appears 

to be around ten million trials. 

 

Distributed Monte Carlo
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Figure 4 - Distributed Monte Carlo (Higher Order Trials) 

 

3.6 Conclusions  

 Thus far programming experiments have centered 

about simple distributed programs based upon highly 

parallel problems. The programs have not incorporated 

timeouts for lost work units, such as from a computer node 

going offline. These can be incorporated in later upgrades 

to the code through. Additionally, the prime number and 

Monte Carlo programs I have developed have not used 

floating point numbers, which appears to be somewhat of a 

weakness in using JAVA for high-performance computing 

[8]. 

 Although I had hoped to prove Amdahl’s law as part 

of this experiment, it is ungainly to estimate the actual 

percent serial code of my experimental code inhabited in 

the GreenTea framework. However it may be possible to 

extrapolate the approximated percent of serial code from 

the speedup observed from increasing the number of nodes. 

One approach might be to perform an order two least-

squares curve fit on observed speedup from the node count 

and time value pairs, such as from Figure 2. Then one could 

compare the resulting equation to the formula for maximum 

speedup given in Amdahl’s law, Equation 1.  

3.7 Future Work  

 GreenTea Technologies has been gracious enough to 

provide sponsor my research with a twelve-license issue of 

their product. As such, future research could not only 

include groups of standalone computers, but also the two 

test clusters in development by the other groups in the 

computer architecture class of the computer science 

department at the University of Hawaii at Hilo. Though 

using parallel execution programs as well as system 

monitoring software, such as Ganglia, future research can 

demonstrate the cost and benefits of java-based volunteer 

grid computing. It will be interesting to see the breakeven 

point between communications/java overhead and the 

division of work to an increasing number of nodes.  
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