
Java-based Volunteer Grid Architecture

Robert R. Puckett

Computer Science Department

University of Hawaii at Hilo

Hilo, HI, USA
justpuckett@gmail.com

Abstract – Grid Architecture coordinates the sharing of

resources and allows for collaboration of often

heterogeneous equipment that is geographically

distributed. While research grids provide needed services,

volunteer-based grids promise greater processing power

provided that the overhead, availability, and heterogeneity

of the resources are manageable. JAVA-based applets

provide quick installation across heterogeneous platforms

and are well placed to speed the transition to grid

computing.

Keywords: Grid Computing, distributed computing, JAVA

applet, benchmark, resource management.

1 Introduction

 Companies and institutions wishing to expand their

processing power have typically faced among three typical

options. That is, they can buy more equipment, subscribe to

a service provider, or make better use of the equipment they

have. Grid computing falls between the last two options.

Research grids can provide institutions with the ability to

combine their processing power with other institutions’

resources into a collaborative, shared resource which

outstrips the capabilities of any one institution. At the other

end of the spectrum, volunteer grids form from users

installing software to share their underutilized computer

resources with a central authority which disseminates work

units.

 This paper provides an overview of grid computing as

well as a case study at the University of Hawaii at Hilo

computer science department. As part of the computer

architecture class, the case study centered on using

GreenTea Technologies’ java-based grid computing

software to build a distributed peer-to-peer grid. This tool is

used to perform benchmarks and analysis on various

organizations of computers scaling from single computers,

to a collaboration of two small clusters.

 Volunteer grids provide the opportunity for users to

volunteer their personal computing power toward causes

they deem worthy. Current such grid projects include

Folding@home and Seti@home. Additionally, Seti@home

averages 13Tflops of processing power making it more

powerful than even the top three supercomputers combined.

As such, Gordon Bell projects that grid computing and

peer-to-peer computing coupled with Internet 2 will remain

the most powerful supercomputer [7].

2 Grid Computing

 Grid computing differs from many peer-to-peer

distributed computing programs in that there is a central

authority computer which manages the distribution and

collection of work units. To process a job on a grid

computing system, one would connect to the central

authority and request one’s job be processed.

 When the central authority receives the job, the job

must be subdivided into work units for processing on the

work nodes, which are the work computers that are

members of the grid. If the job is an application, then it

must be designed for parallel computation. Alternatively the

job could be a sequence of input to run against an existing

grid-based application, such as a gene search against a

genome database. Figure 1 demonstrates an example

architecture for a grid.

Figure 1 - Grid Architecture Example

2.1 Categories of Grids

 Although grid computing serves a diverse market

ranging from commerce to research, grid computing is

typically divided into three broad categories: computational

grids, data grids, and equipment grids.

2.1.1 Computational Grids

 Computational grids focus on providing the raw

computational power needed to solve computation intensive

problems. Bioinformatics benefits from grid computing as

gene sequencing and protein folding require immense

computational power. Through computational grids more

processing power can be harnessed than any single

supercomputer.

2.1.2 Data Grids

 Immense repositories of data, such as gene data banks,

are overly burdensome to maintain multiple coherent

copies. To provide higher levels of RAID redundancy and

integrity may exceed or encumber the financial resources of

an institution. Thus it is opportunistic for companies to

cooperate and share repositories of data for research. While

some overhead exists from not having local copies of the

data, appropriate management of resources can ensure that

this overhead is kept to a minimum. Data grids provide for

control and access of large repositories of data which may

be geographically distributed.

2.1.3 Equipment Grids

 Institutions with a primary piece of equipment and

various associated support equipment may benefit from

forming an equipment grid. For example, a telescope will

have control, processing, and analysis equipment to support

it. As such, an equipment grid can allow remote control and

access to the unique resources of an institution.

2.2 Applications for Grid Technology

 Applications that run on grid technology tend to fall

into two classifications: highly parallel problems, and

dependent parallel problems.

2.2.1 Highly Parallel Problems

 Highly parallel problems can be decomposed into

independent work units. Such problems are often dubbed

“embarrassingly parallel” problems as they do not rely upon

data within any other work unit which may be on a different

computer. As such there is little or no communication

between multiple nodes. Embarrassingly parallel problems

include ray tracing, single frame rendering, and brute force

cryptography.

2.2.2 Dependent Parallel Problems

 In contrast to highly parallel problems, dependent

parallel problems require much greater communication

between the work nodes to derive solutions. Such problems

rely on values derived in multiple work units. Some

examples include heat diffusion, ecosystem modeling, and

climate modeling.

2.3 Grid Computing Software Components

 The software that drives grid computing must be

adaptable to run the desired computers that will serve as

work nodes in the grid architecture. Making the client

software that runs on the nodes independent of the system

architecture or operating system permits a highly

heterogeneous community of computers to contribute.

2.3.1 Resource Management

 Resource management involves dividing and

disseminating the work units. The resource manager also

may play a role in supporting collaboration between nodes

for dependent parallel problems. Work division must

balance communication overhead with computation time.

That is, the greater number of work units, the greater the

overhead from communication in transmitting and receiving

the data to the nodes. On the work nodes variables that may

affect the allocation of work units includes processor speed,

disk space available, and quality of network connection.

2.3.2 Resource Discovery

 Part of the management of grids includes software to

discover new resources. Such software may include the

capability of identifying computers running the client

software within a network. Additionally, grid nodes may

notify the central authority computer of their presence and

readiness for processing jobs.

2.3.3 Resource Monitoring

 Grid management software may be integrated with a

grid monitoring application. Monitoring is important to

ensure efficient and even distribution of work to resources.

The software may provide a graphical interface or merely

text log files.

2.3.4 Integrity and Security

 Ensuring integrity and security is vital yet more

challenging on a grid architecture given the typically

distributed nature of the medium. Computers cooperating to

build a solution may be separated by thousands of miles.

Thus, the grid management software must ensure that the

work units maintain their integrity from both accidental and

malicious modifications.

 Furthermore, given the great processing power

capable in a grid, security is paramount to ensure that the

grid software does not permit unauthorized users to access

the machines. In addition to wasting resources, such access

could be used to launch distributed denial of service

attacks. Grid applications, like any other software, can be

vulnerable to stack, buffer, and memory overflows which

could permit malicious users to gain unauthorized access to

node computers. Although the grid application may be

secured, the tools used to build it such as the Globus toolkit

may potentially hide additional security threats.

Additionally missed upgrades, invalid certificates, and

rebuilds of software may threaten security.

 Even the Teragrid, an amalgamation of

supercomputers forming a research grid in the United

States, has proven susceptible to hacker intrusions. [1]

Although providing openness and ease of joining or using a

grid may seem like idyllic gestures, they can lead to

compromised security and integrity of systems.

2.3.5 Transmission

 Grid computing must provide a mechanism for

transmitting and receiving work units between the central

authority computer and the work nodes. Generally grid

computing uses the existing TCP/IP protocols as a

backbone for transmission. Additional application layer

protocols may be needed to ensure that work units are not

lost from, for example, a work node going offline.

2.4 Challenges to Implementing Grids

 First of all there exists a public stigma attached to

grids that they are primarily for grand scale projects

requiring massive amounts of computation. However, grid

architecture can scale up or down to meet the needs of a

diverse population of clients.

 Secondly, most commercial software is not designed

to run on grid architecture. Similar to the transition from

single processor to multiple processor machines, the

software must be adjusted at the code level to accommodate

spreading the distribution of work across multiple machines

on a grid.

 However, consider a common operation in a business,

that of querying a large database. This operation may be

performed during payroll, sales, and support. On a single

server system the server may need to scan a large portion of

the database to return results for a query. A grid computing

solution to this problem might divide the database into

hundreds of work units and send it off to the work nodes in

the field. The work nodes would run the query against its

small subset of the database and return its result. A simple

merge sort could then combine the results into the final

result set returned to the user. Thus, the server would

experience a reduced load as the work is distributed to the

grid and the grid would function like a giant multi-

processor machine. Therefore, the conversion of certain

business operations to run on a grid could well justify the

expense.

 One other challenge facing grid computing is the lack

of standards as the technology is still somewhat immature.

Companies vying to create standards for grid computing

include GCF, W3C, and OASIS.

3 Case Study: A Java-based Grid

 Although development of complex software

applications for grid architecture may be beyond many

companies’ capabilities, there exists a simpler method for

incorporating benefits of grid computing. Java-based

volunteer grids incorporate a platform independent

application which manages the grid of computers. One such

program is GreanTea provided by GreenTea Technologies.

3.1 GreenTea Description

 GreenTea is a Java-based application that facilitates

parallel computation, which can include peer-to-peer

computing, grid computing, distributed computing, and

network computing. Since it is programmed in Java, the

application can run on most any platform including UNIX,

Linux, Windows, Mac OSX, and even Java-enabled cell

phones. [4]

 Additionally, GreenTea is far simpler to install and

configure than MPI or other low-level tools such as the

IBM Globus Toolkit. However, GreenTea does cause 15-

20% overhead. [4]

3.2 Project Overview

 This project centers on researching the relationship

between speedup of a process and the number of computers

on a grid. Amdahl’s law [7] has been applied to grid

applications as a means of estimating the maximum speed

up from applying a given code to parallel execution.

Maximum speed up is given by the equation:

NFF /)1(

1

−+
 (1)

F represents the fraction of the code that is serial and

cannot benefit from parallelization. N represents the

number of processors, in terms of grid computing, work

nodes that will work on the code. However, this law ignores

the overhead from communication between nodes.

 Therefore, the speedup is limited by the amount of

overhead from communication between the nodes. From

analyzing benchmark runs on various configurations it may

be possible to derive the maximum number of nodes a

given piece of code could derive benefit under parallel

execution. If the percentage of serial vs. parallel code can

be approximated, this may aid in the development of an

optimization routine. Since both too little and too much

division of the work can lead to sub-optimal time for

completion, an optimization routine is desirable.

3.3 Test 1: Ray Tracing Proof of Concept

 In this experiment I performed the ray tracing demo

included with the GreenTea demo package. For all tests

herein the number of lines and sphere/line is fixed at 10.

The three trials, demonstrated in figure 2, show variations

in the time not only from varying the number of nodes, but

also from varying the number of subtasks. As shown,

increasing the number of subtasks tends to decrease the

time to complete the ray tracing operation. However,

increasing the number of nodes tends to provide the

greatest benefit.

Time Vs. # Nodes Vs. # Subtasks

0

10

20

30

40

50

60

1 2 3

Nodes

T
im
e

#Subtasks =

#Nodes

#SubTasks = 2 * #

Nodes

#Subtasks =

4*#Nodes

Figure 2 - Green Tea Trials

3.4 Test 2: Prime Numbers

 In this experiment I developed a prime number

validation routine that operates in a distributed manner

across a GreenTea network. First, the program divides the

test value in half since no factors can be larger than half the

test value. Actually, the square root of the test value might

have been more appropriate here. Anyway, next the lower

half is divided by the number of word nodes in the

GreenTea network. This value is provided by one of the

GreenTea classes.

 Next, the work classes are stored and subsequently

sent through the network to the work nodes. There the work

nodes check ever value if the work unit includes values less

than ten, or every odd value if the work unit is only

numbers greater than ten. While this causes many numbers

to be checked whose factors have already been checked,

this method is very simple and it would be inappropriate to

maintain a list of the prime numbers.

 Lastly, a Boolean value representing whether the work

unit’s interval is relatively prime to the test value is

returned to the main program via the network. The main

program compares all returned results, returns the results to

the user, and displays the total elapsed time for the process.

3.5 Test 3: Monte Carlo Integration

In this program I have coded a Monte Carlo

integration estimation to the integral of one fourth of a

circle with radius 1. This is accomplished using the Monte

Carlo integration by inscribing that quadrant within the unit

square. Note that this is equivalent to formula 2. For this I

have implemented an existing random number generator.

Supposing that the random number generator is sufficiently

random, the Monte Carlo technique will provide an accurate

estimation to the integral value at high numbers of intervals.

 ∫ −
1

0

21 x (2)

For the random number generation I chose the fourth

example from Park and Miller [9]. This example stipulates

that MAXINT must be smaller than 2
31
-1. Although quasi-

random numbers might be more appropriate for a Monte

Carlo simulation, this implementation uses pseudo-random

numbers. The convergence of this solution, where N is the

number of trials, is:

n

1
 (3)

Overall the development of the random number

generating code is relatively straightforward and self-

explanatory. One point of note is that each of the work

nodes needed to receive its own unique seed for the random

number generation. Without that, the pseudo-random nature

of the random number generator would produce identical

results across most of the work nodes. Thus, the main

program used its own copy of the random number

generator to produce pseudo-random seeds which were then

passed to and used in the work nodes.

Although the Monte Carlo method for integration

approximation does converge upon the correct answer, it

does so at an incredibly slow rate. If high rate of accuracy is

needed, this method may be prohibitively expensive in CPU

time. However, for what Monte Carlo lacks in speed to a

solution, it makes up for in simplicity. Of course, the

accuracy of the Monte Carlo method is dependent on the

random number generator providing truly random numbers.

Additionally, owing to the nature of the random numbers,

the value of the estimation to the integral will not converge

in a strictly decreasing manner. This method may be useful

for functions that are difficult or cumbersome to integrate

analytically, as was the example above. Additionally, higher

dimension integrals can be performed in a similar manner

by enclosing the desired portion within a known

area/volume/etc.

Distributed Monte Carlo

200

300

400

500

600

700

800

900

1 2 3

Nodes

T
im
e
 (
m
s
)

1 Trial

10 Trials

100 Trials

1000 Trials

10,000 Trials

100,000 Trials

1,000,000 Trials

Figure 3 - Monte Carlo Trials (Lower Order Trials)

 Figure 3 demonstrates that there is not always a cost

savings in a distributed solution. As the number of nodes

increased, the time to complete the same task actually

increased! Additionally, the data shows that some

subsequent, in other words larger, tests perform better than

test cases where there is fewer trials. One reason is that

overhead from division and distribution of work units plays

a major factor in determining the run time of a program.

Figure 4 demonstrates that in higher order trials there is

indeed an appreciable decrease in completion time for using

more nodes. The break even point for this algorithm appears

to be around ten million trials.

Distributed Monte Carlo

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3

Nodes

T
im
e
 (
m
s
)

100,000 Trials

1,000,000 Trials

10 Million Trials

100 Million Trials

1 Billion Trials

Figure 4 - Distributed Monte Carlo (Higher Order Trials)

3.6 Conclusions

 Thus far programming experiments have centered

about simple distributed programs based upon highly

parallel problems. The programs have not incorporated

timeouts for lost work units, such as from a computer node

going offline. These can be incorporated in later upgrades

to the code through. Additionally, the prime number and

Monte Carlo programs I have developed have not used

floating point numbers, which appears to be somewhat of a

weakness in using JAVA for high-performance computing

[8].

 Although I had hoped to prove Amdahl’s law as part

of this experiment, it is ungainly to estimate the actual

percent serial code of my experimental code inhabited in

the GreenTea framework. However it may be possible to

extrapolate the approximated percent of serial code from

the speedup observed from increasing the number of nodes.

One approach might be to perform an order two least-

squares curve fit on observed speedup from the node count

and time value pairs, such as from Figure 2. Then one could

compare the resulting equation to the formula for maximum

speedup given in Amdahl’s law, Equation 1.

3.7 Future Work

 GreenTea Technologies has been gracious enough to

provide sponsor my research with a twelve-license issue of

their product. As such, future research could not only

include groups of standalone computers, but also the two

test clusters in development by the other groups in the

computer architecture class of the computer science

department at the University of Hawaii at Hilo. Though

using parallel execution programs as well as system

monitoring software, such as Ganglia, future research can

demonstrate the cost and benefits of java-based volunteer

grid computing. It will be interesting to see the breakeven

point between communications/java overhead and the

division of work to an increasing number of nodes.

References

[1] Koch, Lewis E. 2004. A Quiet Time Bomb. The Raw

Story. Retrieved February 23, 2006 from:

http://www.rawstory.com/exclusives/koch/vulnerable_comp

uter_grid.htm.

[2] Levinson, Meridith. 2005. Who’s Afraid of Grid

Computing? CIO.com. Retrieved February 25, 2006 from:

http://comment.cio.com/soundoff/042505.html.

[3] Peel, Roger M. Grid Computing. Retrieved February

26, 2006 from:

http://www.computing.surrey.ac.uk/personal/st/R.Peel/csm2

3/parallel-1.pdf.

[4] GreenTea Technologies, Inc. GreenTea User Manual.

Retrieved January 25, 2006 from:

http://www.geocities.com/gtusaus/current/docs/readme.html

[5] Foster, I. & Kesselman C. 1997. Globus: A

metacomputing infrastructure toolkit.

[6] Gustafson, John L. Reevaluating Amdahl’s Law.

Retrieved February 20, 2006 from

http://www.rawstory.com/exclusives/koch/vulnerable_computer_grid.htm
http://www.rawstory.com/exclusives/koch/vulnerable_computer_grid.htm
http://comment.cio.com/soundoff/042505.html
http://www.computing.surrey.ac.uk/personal/st/R.Peel/csm23/parallel-1.pdf
http://www.computing.surrey.ac.uk/personal/st/R.Peel/csm23/parallel-1.pdf
http://www.geocities.com/gtusaus/current/docs/readme.html

http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/

Amdahls.html.

[7] Bell, Gordon & Gray, Jim. 2002. What's Next in High-

Performance Computing? Communications of the ACM,

Volume 45 Issue 2. ACM Press. February.

[8] Kahan, W. & DARCY, J. 1998. How JAVA's Floating-

Point Hurts Everyone Everywhere. ACM 1998 Workshop

on Java for High–Performance Network Computing.

Retrieved February 26, 2006 from:

http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf.

[9] Park, S. and Miller, K. 1988. Random Number

Generators: Good Ones are Hard to Find. Comm. ACM 31,

1192-1201, 1988.

http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html
http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

	Introduction
	Grid Computing
	Categories of Grids
	Computational Grids
	Data Grids
	Equipment Grids

	Applications for Grid Technology
	Highly Parallel Problems
	Dependent Parallel Problems

	Grid Computing Software Components
	Resource Management
	Resource Discovery
	Resource Monitoring
	Integrity and Security
	Transmission

	Challenges to Implementing Grids

	Case Study: A Java-based Grid
	GreenTea Description
	Project Overview
	Test 1: Ray Tracing Proof of Concept
	Test 2: Prime Numbers
	Test 3: Monte Carlo Integration
	Conclusions
	Future Work

	References

